
RESEARCH ARTICLE

Neural representation of words within

phrases: Temporal evolution of color-

adjectives and object-nouns during simple

composition

Maryam Honari-JahromiID
1☯, Brea Chouinard2☯, Esti Blanco-Elorrieta3,4,

Liina Pylkkänen3,4,5, Alona FysheID
2,6,7*

1 Department of Computer Science, University of Victoria, Victoria, BC, Canada, 2 Department of Computing

Science, University of Alberta, Edmonton, AB, Canada, 3 NYUAD Institute, New York University, Abu Dhabi,

UAE, 4 Department of Psychology, New York University, New York, NY, United States of America,

5 Department of Linguistics, New York University, New York, NY, United States of America, 6 Department of

Psychology, University of Alberta, Edmonton, AB, Canada, 7 Alberta Machine Intelligence Institute,

Edmonton, AB, Canada

☯ These authors contributed equally to this work.

* alona@ualberta.ca

Abstract

In language, stored semantic representations of lexical items combine into an infinitude of

complex expressions. While the neuroscience of composition has begun to mature, we do

not yet understand how the stored representations evolve and morph during composition.

New decoding techniques allow us to crack open this very hard question: we can train a

model to recognize a representation in one context or time-point and assess its accuracy in

another. We combined the decoding approach with magnetoencephalography recorded

during a picture naming task to investigate the temporal evolution of noun and adjective rep-

resentations during speech planning. We tracked semantic representations as they com-

bined into simple two-word phrases, using single words and two-word lists as non-

combinatory controls. We found that nouns were generally more decodable than adjectives,

suggesting that noun representations were stronger and/or more consistent across trials

than those of adjectives. When training and testing across contexts and times, the represen-

tations of isolated nouns were recoverable when those nouns were embedded in phrases,

but not so if they were embedded in lists. Adjective representations did not show a similar

consistency across isolated and phrasal contexts. Noun representations in phrases also

sustained over time in a way that was not observed for any other pairing of word class and

context. These findings offer a new window into the temporal evolution and context sensitiv-

ity of word representations during composition, revealing a clear asymmetry between adjec-

tives and nouns. The impact of phrasal contexts on the decodability of nouns may be due to

the nouns’ status as head of phrase—an intriguing hypothesis for future research.
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Introduction

What is the relationship between the neural representation of a single word, occurring in isola-

tion, and the representation of that same word in a combinatory context? In natural language,

context can morph word meanings in many ways. One of the most obvious ways is via disam-

biguation: for example, in the phrase ‘term paper,’ ‘term’ means semester and ‘paper’ means

‘piece of writing’ even though both of these words have many other uses as well. Thus, the neu-

ral representations of ‘term’ and ‘paper’ may differ robustly depending on the context.

This study uses a decoding approach to address the general question of how combinatory

contexts affect the neural representations of word meanings. We see value in starting with rela-

tively straightforward cases, and thus did not investigate ambiguous cases such as those just

mentioned. Instead, our combinatory contexts were all noun phrases comprised of a color-

adjective and an object-describing noun, such as ‘blue cup.’ This type of composition has been

studied extensively with time-sensitive magnetoencephalography (MEG), with results impli-

cating the left anterior temporal lobe and the ventromedial prefrontal cortex as relatively stable

correlates of composition [1].

Notably, unlike prior decoding work that investigated semantic representations during

comprehension (e.g., [2]), the current MEG study involved language production to measure the

planning of words millisecond by millisecond, during a picture naming task. Pictures of col-

ored objects (e.g., white lamp) were named either with single nouns (“lamp”), single adjectives

(“white”), or with combinations of those adjectives and nouns (“white lamp”). All pictures also

contained a background color, allowing for an additional ‘list’ control, where participants

named the background color plus the object shape (e.g., “green”, “lamp”). This created two-

word utterances that do not form a conceptual combination of the sort that noun-adjective

pairs create in natural language. This ‘list’ condition fully controlled for the number of uttered

words and their lexical characteristics, allowing us to examine just the role of composition.

From prior MEG work on the planning of adjective-noun phrases in picture naming, we

know that activity increases reflecting composition can be observed as early as 100-200ms after

picture onset [3–5]. Estimates of the timing of lexical access in production fall into a similar

time window: at around 150ms, both phonological and semantic properties of words are acti-

vated, as measured by MEG [6]. This suggests that lexical access and composition proceed in

parallel. Against this background, context effects on lexical representations could start as early

as 100-200ms in our study.

We used computational models of language (i.e. a word embedding model; [7]) and

machine learning algorithms to detect semantic representations in the brain. We will use the

term decodability to refer to the ability of our computational models to detect the semantic

information related to the stimulus using a recording of brain activity. Decodability has been

explored for people reading words in isolation [8, 9] phrases in isolation [2], sentences [10]

and stories [11]. Decoding has also been successful using data collected while people listen to

language [12, 13]. Our work is, to our knowledge, the first to use decoding techniques and

MEG to detect the semantics of words before they are uttered.

Our design allowed us to quantify the relative decodability of noun and adjective neural

representations in isolation, and when combined into adjective-noun lists or adjective-noun

phrases. Classic syntactic theories hold that the features of the head of a phrase are inherited by

the entire phrasal node [14], which in neural terms could mean that the representation of a

head is stronger, and thus more decodable, than the representation of a modifier. In our study,

this would result in the noun, as the head of the phrase, having greater decodability than the

adjective. In contrast, theories in formal semantics posit that the intersective modification of

nouns by adjectives proceeds via a fully symmetric predicate modification rule [15]. Thus, in
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our study, equal decodability of both the adjective and the noun within the phrases could be

interpreted as a reflection of this type of symmetric semantic composition.

Additionally, decoding from a time-sensitive measurement like MEG allowed us to address

neural representations across time. These analyses can be done in three ways. First we can train

our model and then test using held-out data, where both train and test data come from the

same time window (same-window-decoding). This typical decoding analysis allows us to mea-

sure the robustness of a neural signature within a time window. Second, we can also keep the

time window constant, but choose held-out test data from another condition, testing how similar

a representation is across conditions (across-condition). Third, we can choose a different time
window from which to draw our held-out test data, testing the robustness of the pattern in time

(resulting in a temporal generalization matrix, or TGM). This third analysis type allows us to

test if a semantic representation is held constant in the brain over some time period, or if it re-

emerges at different time points. Classic language production models propose a sequence of

activated representations, proceeding from concept to lexeme to phonological representation

and so forth [16] but say nothing about whether, for example, the conceptual representation

stays active past the initial processing stages. Our data allowed us to ask whether representations

detected by our models at a certain time after picture onset were also decodable at later times,

or whether the processing stream only showed the characteristics of the classic models, where

neural representations transform into new representations as we move towards articulation.

To summarize, we ask to what extent the neural representation of a word is the same when

it is prepared for production as a single word compared to when it is prepared as part of a

meaningful phrase. We do this using computational models of language meaning to compute

decodability for adjectives and nouns when they are in isolation, and when they are part of a

combinatory phrase vs. a non-combinatory list. We also evaluate the persistence and/or re-

emergence of a word’s meaning, in isolation and in phrases and lists, using TGMs.

Methods

All experimental protocols were approved by New York University Institutional Review Board

and conducted in accordance with the relevant guidelines and regulations, and all participants

signed an informed consent form before taking part in the experiment. The data were origi-

nally collected to investigate the relationship between spoken and signed language with regards

to the neural correlates of basic composition in language production [4]. In the current study,

we used only the spoken language data. Our goal was to compare pre-utterance semantic rep-

resentations in non-compositional versus compositional/phrasal contexts.

Participants

Nineteen right-handed monolingual native English speakers (9 female; ages: Mean: 25.6, 95

SD = 7.3), all neurologically intact with normal or corrected to normal vision, provided their

written consent to participate in the original study [4].

Stimuli

Participants named pictures that depicted a colored object (e.g., white lamp) on a colored

background (e.g., green) (Fig 1). All conditions used the same stimuli, and instructions at the

beginning of the block differentiated the naming task to be performed in each condition. Non-

compositional utterances were elicited by asking the participant to (i) say the name of the

object color (i.e., “white”; adjective-only context); (ii) say the name of the object (e.g., “lamp”;

noun-only context); or (iii) to say the background color, then pause, then the object name in a

list-like fashion (e.g., “green”, “lamp”; list context). In the compositional context, participants

PLOS ONE Neural representation of words within phrases: Temporal evolution of adjectives and nouns during composition

PLOS ONE | https://doi.org/10.1371/journal.pone.0242754 March 4, 2021 3 / 17

https://doi.org/10.1371/journal.pone.0242754


were directed to describe the colored object on the screen by saying its color followed by its

shape (e.g., “white lamp”; phrase context). Examples of images and utterances for each context

appear in Fig 1A. There was also a control condition wherein the participant was instructed to

say the background and object colors, but it was not analyzed here. The order of blocks was

randomized across participants with the only constraint being that two blocks of the same con-

dition never appeared consecutively. We controlled for frequency across word types (adjec-

tives vs. nouns) using frequencies was extracted from Balota et al. [17]. Average noun

frequency was 14396, average adjective frequency was 14976 (t = -0.47, p = .640742).

In total, the experiment consisted of 500 trials in which participants viewed one of 25

unique images created from a subset of five object shapes (bag, bell, cane, lamp, plane) and five

colors (black, brown, green, red, white). Each image was also given a background color, which

was counterbalanced so that background colors appeared an equal number of times, equally

distributed across the different shapes. We also swapped the object and background colors to

create a complementary set of 25 stimuli, thus creating 50 stimuli images in total. These 50

items were presented twice each for a total of 100 trials per condition. The items were pre-

sented in blocks of 25, for a total of 4 blocks per condition.

Fig 1. Experimental design and trials structure. Participants named colored objects in three ways, depending on task instruction: as phrases (white lamp), as single

nouns (lamp), as single adjectives (white) or as adjective-noun lists (green, lamp), naming the color of the background followed by the object name. Our analyses assessed

the decodability of adjective and/or noun representations in these four contexts.

https://doi.org/10.1371/journal.pone.0242754.g001
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MEG procedure and preprocessing

Prior to the MEG recording, each participant’s head shape was digitized by a Polhemus dual

source hand-held FastSCAN laser scanner (Polhemus, 112 VT, USA). The MEG data were

recorded using a 208-channel axial gradiometer system (Kanazawa Institute of Technology,

Kanazawa, Japan) at Neuroscience of Language Lab in NYU Abu Dhabi. MEG data were

collected with a sampling frequency of 1000Hz (200 Hz low-passed filter). An MEG compat-

ible microphone (Shure PG 81, Shure Europe GmbH) was used to record uttered speech of

the participants. Each trial started with a fixation cross for 300ms, followed by the stimulus

image, which was present until participant’s response or timeout (1500ms, see Fig 1B).

Afterwards, a break of 1200ms was given until appearance of the fixation cross belonging to

the next trial. Trials were epoched at 100ms before to 700ms after stimuli onset to avoid con-

tamination via motion artifact coinciding with overt speech and noise was reduced using

Continuously Adjusted Least-Squares Method [18]. Epochs were baseline corrected using

the average of a 100ms interval prior to the stimulus onset. Unlike Blanco-Elorrieta et al.

[4], we rejected only those trials with erroneous responses. MEG signals were band-passed

using a Butterworth filter of order 20 between 0.1Hz and 40Hz. We used no ICA artefact

rejection or blink / heart beat removal, as such artefacts are less problematic in decoding

studies.

Our analysis operates on the within-participant average over trials of a particular word in a

particular context. Based on the context and word-type of interest, we first chose a target word

and then select trials with a target utterance containing that word. Within this set of selected

trials, we averaged random groups of 5 epochs to minimize noise in the signal. This yielded 4

averaged epochs per noun and 20 averaged epochs in total. We followed the same procedure

of averaging epochs for the adjectives. Trials were averaged within participant; we trained sep-

arate models for each participant, and report the average model performance. Further decod-

ing analysis and statistical significance tests were conducted in Scikit-learn [19] and

MNE-Python [20] and FieldTrip [21]. The code for all analysis is available at https://github.

com/mahon94/compositionInBrain.

Decoding neural signatures using computational models of language

We calculated decoding accuracies to determine if the computer model could detect the

semantic properties of the words to be uttered from the MEG data. Here, our computer model

consists of word embeddings that represent the semantics of single words, and a regression

model to map the MEG data to the dimensions of the word embeddings. We used Skip-gram

word embeddings [22], which are derived from a neural network model trained on the Google

News dataset (an internal Google dataset with one billion words) to predict context words. We

were interested in how decoding accuracy varies over time, so we trained using 100ms win-

dows of time, shifted in increments of 5ms across the full time window (i.e., -100 to +700ms

relative to stimulus onset). An overview of the data organization, training procedure and 2 vs.

2 test appears in Fig 2.

Similar to the approach described in Fyshe et al. [2], we form the MEG dataset X 2 RN�p

where N = 20 is the total number of averaged epochs reshaped to vectors of size p = c×t, for

c = 208 MEG gradiometer sensors with t = 100 time samples per window of analysis. We nor-

malize each column of X to have mean 0 and standard deviation 1, and append a column of

ones to account for the bias term. We then train d independent L2-regularized (ridge) regres-

sion models hj(X),j2{1,2,. . .,d} to predict each column of the matrix of word embeddings Y 2
RN�d

(d = 300 is dimension of the Skip-gram vector). The jth regression model is trained as
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follows:

hjðXÞ ¼ X j;

j ¼ argmin kX � yjk
2

2
þ l T

¼ ðXTX þ lIÞ� 1XTyj

Where j 2 R
p; kAk2

2
indicates the squared two norm of A, and yj is the jth column of matrix

Y. We determine the best performing regularization parameter λ separately for each column

of the word embedding matrix using leave-one-out cross validation. Since N�p, we speed up

training using the kernel trick based on singular-value decomposition (SVD) demonstrated by

Hastie & Tibshirani [23], and regularization helps to control overfitting. Note that every model

was trained separately for each participant. Thus, the patterns underlying the decoding accura-

cies we observed may not be stable across people, and our analysis did not test for such stabil-

ity. Rather, we tested for the presence of a pattern, and if the patterns generalize across time

and condition within a participant’s data. Our methodology then tests if the average decoding

Fig 2. Explanation of data, model, and testing procedures. Values that are fixed appear as solid-colored rectangles, and values that are learned or predicted

appear as dotted rectangles. A) The dimensions of the MEG data X (blue) and the word embedding matrix Y (green). B) The process for predicting one dimension

(j) of the word embedding matrix Y. Note that this is corresponds to hj(X) in the in-text equations. C) Predicting all dimensions of a word embedding for MEG

data sample xi. W is the concatenation of w vectors from B). D) The 2 vs 2 test. The 2 vs. 2 test measures how similar the predictions (ŷ a, ŷ b) are to their

corresponding ground truth vectors (ya, yb) using a vector distance criterion d(v,u). If the correct matching of true to predicted vectors (blue lines) represents a

smaller distance than the incorrect matching (red lines), the 2 vs 2 test passes.

https://doi.org/10.1371/journal.pone.0242754.g002
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accuracy (a function of the participant-specific patterns) shows stable patterns across

participants.

As mentioned previously, the regression model can be trained and then tested within or

across conditions. For simplicity, we will refer to each train/test regime using a pair of context

names separated by a slash, with the word before the slash referring to the training context,

and the word after the slash referring to the testing context. For example, if we were to both

train and test in isolation, we would refer to it as isolation/isolation. If we were to train in the

isolation context and test in the phrase context, we would refer to it as isolation/phrase.

Within-context accuracy (e.g., phrase/phrase) indicates the consistency of the representa-

tion across trials within a context. Across-context accuracy (e.g., isolation/phrase) indicates

how consistent the neural representation is between the two contexts. Thus, high accuracy for

nouns in a isolation/phrase analysis would indicate that the neural representation of the noun

is similar in isolation and in list context. Accuracy was computed using the 2 versus 2 test.

Computing decoding accuracy using the 2 versus 2 test

On a dataset of N averaged epochs, we hold out 2 averaged epochs and the two corresponding

target vectors (yi, yj). We train the model on the remaining N-2 averaged epochs and N-2 tar-

get vectors. Testing the model on the 2 held-out averaged epochs provides two predicted

semantic vectors (ŷ i, ŷ j). The 2 vs. 2 test measures how similar the predictions (ŷ i, ŷ j) are to

their corresponding ground truth vectors (yi, yj) using a vector distance criterion d(v,u). While

any kind of distance metric can be used, we opt for cosine distance. In particular, the test

passes if the following equation holds:

dðŷ i; yiÞ þ dðŷ j; yjÞ < dðŷ i; yjÞ þ dðŷ j; yiÞ ð1Þ

where the distance of matching vectors is smaller than the distance of non-matching vectors.

We award a score of 1 if the test passes, 0 if it fails, and 0.5 if the two summations are equal.

The reported 2-vs-2 accuracy is the average score of the 2-vs-2 test on every possible pair in the

dataset (20 choose 2, denoted 20

2

� �
¼ 190Þ. Recall that our 20 data instances contain 4 samples

for each word. For this reason, 30 of the 190 2-vs-2 pairs will pair two samples of the same

word. Such a pairing renders the 2-vs-2 test degenerate because yi = yj and the two halves of Eq

(1) are equal. Thus, there are a total of 20

2

� �
� 30 ¼ 160 valid 2-vs-2 pairs. An illustration of the

2 vs. 2 test appears in Fig 2D.

Statistical significance. To assess the statistical significance of the 2-vs-2 accuracy, we use

permutation tests. In permutation tests we randomly shuffle the mapping of target utterances

to MEG epochs. This simulates the scenario where there is no meaningful relation between the

MEG recordings and the target utterances. We train and test our model on datasets built with

100 randomly shuffled utterance-to-epoch mappings, producing 100 decoding accuracies. As

expected, the mean decoding accuracy on the shuffled datasets is at chance (50%). We then fit

a normal kernel density function to the histogram of decoding accuracies to form a null distri-

bution. From this null distribution, we calculate the p-value for the decoding accuracy of mod-

els trained with the original un-permuted labels. To determine if results are above chance, we

correct the p-values for multiple comparisons over time using False Discovery Rate (FDR)

with no dependency assumption (Benjamini-Hochberg-Yekutieli method; [24]).

When comparing the effect of context and word category on accuracy of the models, we

find clusters of time where the 2-vs-2 accuracy differs significantly using a 2 x 3 ANOVA com-

bined with the cluster permutation method [25]. We submit the 2-vs-2 accuracy of each time

point to a 2 x 3 ANOVA (2 word categories by 3 conditions) to create p-values for main effects

and interaction effects. For the cluster permutation method, we identify clusters of time where
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p< 0.05 for at least 3 adjacent time points (main and interaction effects considered separately).

For each cluster, we assign a cluster-level statistic equal to the sum of F-values for all time

points within the cluster. We report the largest time cluster in time window 0-400ms and 400-

650ms to account for earlier and later effects. To correct for the final cluster-level p-value, we

permute the accuracies by randomly assigning the word category and condition labels within

each participant data for 10,000 times.

Temporal generalization matrices. Temporal generalization matrices (TGMs; [26]) were

used to test if the patterns identified with our ridge regression models were stable across time

and/or contexts [26]. For simplicity, we first describe how to use a TGM to evaluate across

time but within context, and then generalize to evaluating across contexts.

To evaluate across time, instead of training and testing using data from the same time win-

dow, we form a matrix M where Mij contains the decoding accuracy of a model trained on a

window centered at time i and tested on another window centered at time j. We leave out two

averaged epochs from both time windows. We train the regression models using the N-2

remaining epochs from time window i, and test the regression models on the two left-out aver-

aged epochs from time window j. If the neural representation of the word is consistent over

time, then similar patterns will be leveraged by regression models trained on different time win-

dows (thus yielding similar learned weights), resulting in above-chance decoding accuracy even

when the train and test data are from differing time windows. If the representation of a word is

stable over time, there will be high accuracy in blocks near-adjacent to the TGM diagonal,

whereas if the representation re-emerges later in time there will be areas of high accuracy further

from the diagonal (i.e., off-diagonal), separated from the diagonal by an area of lower accuracy.

We can also create cross-context TGMs, which test if representations of a certain word-type

are consistent across contexts. Again, we form a matrix M where Mij contains accuracy of the

prediction model trained on data from context A (e.g. phrase), time i and tested on data from

context B (e.g. list), time j. In a cross-context TGM, if the representation of a word-type is sim-

ilar in both contexts at the same time points (i.e., when i = j), there will be high accuracy along

the diagonal. If the representations are similar across the contexts, but at different times (i.e.,

with some lag), we see high off-diagonal accuracy. (For an excellent tutorial on TGMs, see

[26]. For a more language specific interpretation, see [27]).

Results

Trials containing behavioral errors were excluded from our analysis. Erroneous articulations

included productions of wrong names and utterance repairs. Response accuracy was always

above 97%. The average latency of speech onset for each context in increasing order was:

adjective-only, 772ms; noun-only, 792ms; list, 897ms; and phrase, 917ms.

Effect of category and context on word decodability (within-condition,

within-timepoint decoding)

The time courses of noun and adjective decodability are shown in Fig 3, broken down by con-

text, with dots above the x-axes indicating windows of reliable, significantly above-chance

accuracy. Here, training and testing data are from the same time window and the same condi-

tion. Zero indicates the onset of the picture stimuli.

When were nouns and adjectives in general decodable above chance? While nouns were

reliably decodable in all three contexts for sustained periods of time (phrase: 105–365, 385,

420-460ms; list: 110–170, 195–215, 225–355, 380ms; isolation: 140–190, 200–215, 235–240,

325-650ms), adjective decodability was mostly limited to a late time-window close to articula-

tion in all three tasks (phrase: 595–620, 630-650ms; list: 65–245, 520–530, 565-650ms;
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isolation: 430, 445-650ms). In addition, adjectives in lists showed an early peak of high accu-

racy (65-245ms), possibly due to the somewhat artificial attention that needed to be paid to the

background colors in the list task. Though we did not explicitly test for the effort needed for

each naming task, we find it plausible that this may increase neural demands in some way that

could also increase decodability.

In the phrase condition, only nouns showed reliable decodability, and this lasted through

much of the epoch. In lists, adjectives were robustly decodable in an early time-window of

~100-250ms, while the time course of noun decodability was similar to the phrase context.

Finally, isolated single words showed the same contrast as phrases: more reliable and longer

lasting decodability of nouns than adjectives, though at the end of the epoch, adjective decod-

ability did reach significance.

The effect of category and context on decodability was evaluated with a 2 x 3 ANOVA with

word-category (adjective, noun) and context (isolation, list, phrase) as factors (Fig 3). A main

effect of word-category was significant at 240-395ms, with higher decoding accuracies for

nouns than adjectives. A main effect of word-category was also observed at 580-650ms, with

higher decoding accuracies for adjectives than nouns (Fig 3, gray shading). We found an inter-

action effect for this 2 X 3 ANOVA at 100-190ms (p< 0.00001; not illustrated).

As our main question pertained to the effect of context on single word representations, we

conducted further, more targeted analyses contrasting the isolated word stimuli to the phrases

and list trials in two separate 2 x 2 ANOVAs. A phrasal context indeed enhanced the decod-

ability of both nouns and adjectives, as compared to an isolated word context, but so did a list

context (isolation/isolation vs phrase/phrase: context effect at 245-295ms and 510-650ms. Sim-

ilarly, isolation/isolation vs list/list: context effect at 60-175ms and 405-650ms.). Thus, we are

not able to attribute this increase in decodability to composition specifically. All 2 x 2 Anova

results appear in the S1 Appendix.

Generalizability of word representations across time in each context

(within-condition decoding)

While the decoding analysis just described—with training and testing always using the same

time point—did not reveal a compelling effect of composition on single word decodability, the

analysis using TGMs did (Fig 4). In particular, during phrase planning, noun representations

Fig 3. Decodability across time for adjectives and nouns when presented within phrases, lists or in isolation as single words. The grey shading indicates a

significant main effect of category on decodability across all contexts, with nouns showing higher accuracy than adjectives in the mid-latency time-window of

240-395ms after picture onset. Dashed lines above the x-axes indicate when decoding accuracy was reliable for the nouns (red) and adjectives (blue). Blue

shading indicates the intervals during which the main effect of context was observed, that is, higher decodability of both categories when occurring in two-

word contexts (phrase or list). Though not shown, there is an interaction effect 100–190 ms.

https://doi.org/10.1371/journal.pone.0242754.g003
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trained at early time points, starting at ~100ms, stayed active/decodable until about 400ms

post picture onset (above chance accuracy regions outlined in black, Fig 4). This was not the

case during the planning of lists, nor for adjective planning in any context.

Generalizability of word representations across time and from isolation to

two-word contexts (across-condition decoding)

Finally, our across-condition TGMs addressed the degree of similarity between word represen-

tations when produced as isolated words as opposed to when planned together with another

word, in order to produce either a phrase or a list (Fig 5). Decoding accuracy of noun repre-

sentations was reliable even when the training used isolated nouns and the testing used phrase

data. The decoded representations also generalized across time, such that noun representations

that were successfully decoded at 100-200ms disappeared and then re-emerged about a hun-

dred milliseconds later, while representations at 300-400ms stayed active in a more sustained

fashion until 500-600ms (above-chance regions outlined in black, Fig 5). The significantly

above chance accuracy appears mostly below the diagonal, implying that the representation

seen earlier in the isolation context matches the later representation in the phrase context. Iso-

lated noun representations did not generalize well to list contexts, and did not show generali-

zation across time (train isolation, test list in Fig 5A).

Adjective representations did not generalize from isolated contexts to phrasal contexts

nearly as robustly as nouns. Mainly, evidence of shared representations across these two con-

texts were observed in a late time-window, close to articulation, at 500-600ms. This could

reflect planning of the adjective articulation, which in all these contexts was the first word to

be uttered. In a similar late time-window, isolated adjective representations generalized to

adjectives in the lists, though more weakly.

Discussion

This work addressed the nature and time course of noun and adjective representations in

phrasal, isolated word, and list contexts. How does a simple combinatory context affect the

neural representation of a word? Are adjectives and nouns planned in symmetric fashion dur-

ing language production, or do these word types elicit different activation time courses when

measured with a decoding approach? Our study yielded three major findings. First, apart from

a late time window shortly prior to articulation, nouns were generally more decodable than

adjectives. Second, both adjectives and nouns were more decodable when the task required the

production of two words, either as a phrase or a list. And finally, we used TGMs to evaluate

the temporal evolution of specific semantic representations. As these representations are acti-

vated en route from picture onset to articulation, and nouns were planned as heads of phrases,

the representations active soon after picture onset stayed active up to 400ms into the epoch.

Such a profile was entirely absent when nouns were planned as single words or within lists,

and for all cases of adjective planning. Our across-condition decoding also provided evidence

of similar representations for isolated nouns and nouns in phrases, while such evidence was

much weaker for the generalizability of isolated nouns to nouns in lists, or from isolated

Fig 4. Within-condition TGMs. Within-condition TGMs showing the temporal generalizability of noun (A) and adjective

(B) representations from training time X to testing time Y in the three contexts. When nouns occurred in phrases, their

representations generalized between earlier and later time-points in a way that was not observed for nouns in non-phrasal

contexts or for adjectives in any context. This is evidenced by the off-diagonal instances of reliable decoding in the Noun in

Phrase results (A, left). The right-most column shows subtractions between phrasal and non-phrasal contexts, with black

boxing indicating significant differences.

https://doi.org/10.1371/journal.pone.0242754.g004

PLOS ONE Neural representation of words within phrases: Temporal evolution of adjectives and nouns during composition

PLOS ONE | https://doi.org/10.1371/journal.pone.0242754 March 4, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0242754.g004
https://doi.org/10.1371/journal.pone.0242754


Fig 5. Across-condition TGMs showing the decodability and temporal generalizability of isolated word representations to phrase and

list contexts. Classifiers were trained on nouns and adjectives as they occurred in the isolation context and then tested when those same

words occurred within phrases or lists. (A) Neural representations of nouns were sufficiently similar in isolation and in phrases such that

decoding was reliable starting at 100ms and lasting till almost the end of the epoch. These representations also showed temporal

generalizability starting at 100ms. Representations active at 100-200ms disappeared and then re-emerged about a hundred milliseconds later,

while representations at 300-400ms stayed active in a more sustained fashion until the end of the epoch. (B) Adjective representations, in

contrast, did not generalize from isolated contexts to phrasal contexts nearly as robustly. Mainly, shared representations across these two

contexts were observed in a late time-window, close to articulation, at 500-600ms. This could reflect planning of the adjective articulation,

which was the first word to be uttered in all three depicted contexts. In a similar late time-window, isolated adjective representations

generalized to adjectives in the lists, though more weakly.

https://doi.org/10.1371/journal.pone.0242754.g005
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adjectives to adjectives in phrases or lists. In sum, our findings suggest that during production

planning, the neural representations of nouns are more stable, and therefore more decodable,

than those of adjectives, and that during phrase planning, noun representations generalize

across time and contexts in ways that adjective representations do not.

Timeline of adjective and noun decodability

In general, across the full design, the first word to be uttered was decodable in a late time-win-

dow, shortly preceding speech onset. Given the late timing, the representations driving this

result are likely motor related.

But earlier on 240-395ms during the language planning process, adjectives and nouns dif-

fered in their decodability. Within each context, nouns were consistently decodable, and were,

for the most part, more decodable than adjectives. This was upheld by our 2 x 3 ANOVA,

directly comparing adjective and noun decodability across all three contexts, which indicated

greater noun than adjective decodability in early-to-mid-latency time windows. It appears,

then, that noun representations stayed active for a protracted period of time, while adjective

representations were only stable immediately prior to utterance onset. We also observed an

effect of context, such that whenever either nouns or adjectives were planned as part of two-

word utterances, whether they be lists or phrases, decoding accuracy was higher. Since we

were not able to pinpoint this effect as directly relating to phrasal composition, it connects

only loosely to our research question. It may stem from a higher level attention when planning

two word expressions as opposed to single words. We leave this question for future work and

focus our discussion on the higher decodability of nouns over adjectives.

Although color-adjectives and object-nouns differ in many ways, the restricted nature of

our stimulus choices could have flattened out differences that one might observe in a more

ecologically valid context. Nevertheless, a clear time-course difference was observed. With the

current data, we cannot determine the cause of this, but multiple possibilities exist for future

research to explore. Most interestingly, the difference in noun vs. adjective decodability could

be driven by genuine semantic differences between the two word types. For example, objects

are usually perceivable via multiple senses, we can feel them, see them, and perhaps hear them,

but colors can be experienced only through vision. This could lead to less robust neural repre-

sentations for colors. Relatedly, it has been shown that color dissociates from many other phys-

ical properties when comparing semantic representations in sighted and blind individuals

[28]. Although the sighted and the blind appear to have similar representations for attributes

such as shape and texture, this is not the case for color. It has been hypothesized that this may

result from the lesser taxonomic value of color: color is a much weaker predictor of object

kind than for example shape [28]. Thus the weaker associations between color and other object

properties could also result in less detectable neural representations for color terms.

Color terms are also ambiguous in ways that we have not yet discussed [29]. For example,

despite often occurring as textbook examples of a context-insensitive modifier, the interpreta-

tions of color terms are actually quite context-sensitive–compare red hair and red wine for

example [30]. Although our experiment did not employ different hues, this underlying vari-

ability could nevertheless contribute to lesser decodability for color terms. There are also dif-

ferences in ambiguity as regards syntactic category. Our study used two categories, nouns and

adjectives. While our nouns (bag, bell, cane, lamp and plane) are very unlikely as adjectives in

English, all our color-adjectives are actually also mass nouns (I like milk; I like blue). Given

this, we cannot rule out the possibility that in the list context (red, bag), the participants were

naming the background colors as nouns. If colors occurred both as nouns and as adjectives

within the experiment, this also could have affected decodability.
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Role of phrasal composition in the temporal and contextual

generalizability of noun representations

In addition to addressing the general time course of word representations as they participate

in combinatory phrasal planning, our method allowed us to examine the relationship between

representations active at different times and between representations active in different con-

texts. Although our within-condition, within-timepoint analysis did not reveal compelling

effects of phrasal composition on either noun or adjective representations; the generalizability

of noun, but not adjective, representations was clearly enhanced by a phrasal context, in the

following two ways.

First, the temporal generalizability of noun representations was enhanced by a phrasal con-

text, both as compared to isolation and list contexts (Fig 4). This finding suggests a cascade of

noun representations, many of which stay active for a while. In contrast, adjective representa-

tions showed almost no generalization across time, consistent with a model in which the repre-

sentation of an adjective changes consistently across time, with new representations replacing

the old ones, with no sustained activations (“chain” pattern in [26]). It is interesting that the

compositional context produced the most temporally generalizable representations, as the

hypothesis a priori may have been that composition would change the representation more
over time. However, the stimuli adjectives are largely intersective, and so it is possible that

such a compositional change is less apparent in this experiment. Nouns in phrases was also the

only time we observed the amount of temporal generalization reported by Fyshe et al. [2],

which showed large swaths of above-chance off-diagonal accuracy. This could be for several

reasons, including that the Fyshe study used a reading paradigm that displayed one word at a

time, and so the representations for adjectives and nouns were neatly and predictably sepa-

rated in time.

Second, the contextual generalizability of isolated nouns to two-word contexts was higher

when the two words formed a phrase (Fig 5). The same was not true of adjectives, which

showed much weaker decodability even within condition (Fig 4). Particularly interesting in

the across-condition decoding of nouns was evidence of reactivated representations: represen-

tations active at 100-200ms disappeared and then re-emerged about a hundred milliseconds

later, providing some support to the 10 Hz oscillatory activity reported by Fyshe et al. [2]. In

contrast, representations decoded at 300-400ms stayed active in a more sustained fashion until

the end of the epoch. Though a theoretical understanding of this detailed pattern requires fur-

ther experimentation, the general finding emerging from these results is that the head of the

phrase, the noun, engages a much more stable set of neural representations than its modifier,

the adjective. Given our highly controlled stimulus materials and symmetric nature of the par-

adigm, the asymmetry is striking, and further studies could search for contexts that eliminate

that asymmetry. Assessing which aspects of the decoding results stem from word order would

be straightforward with a language that uses a different word order. The syntactic relation of

the two elements can also be altered using a language in which noun-adjective pairs can convey

a predicative relation without an overt copula: boat (is) red (cf., [31]). In sum, our findings

offer a description of the representational patterns of nouns and adjectives during English

phrase planning, giving rise to a host of novel hypotheses for further investigation.

Conclusion

This work addresses the temporal evolution and context sensitivity of noun and adjective rep-

resentations during phrase planning in production. We discovered a robust asymmetry

between nouns and adjectives, with noun representations being generally more decodable,

more consistent between isolated and phrasal contexts and more sustained over time in
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phrases than those of adjectives. While our findings are not yet highly theoretically constrain-

ing, they open up a rich space of testable hypotheses about the critical factors driving the

observed contrasts, in terms of either the structural or semantic properties of the two word

classes.
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