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         Abstract: 
For a bilingual individual, every utterance requires a 
choice about which language to use. For people who 
speak two languages, switching from one language to 
another inherently means that they concurrently turn one 
language “off” and the other “on”. This simultaneousness 
has made it impossible to answer a fundamental question 
about bilingual language control:  are these two actions 
directed by the same set of control processes or is there a 
fundamental difference between the “off” and “on” 
procedures involved in switching? In this experiment we 
separated these two computations by having American 
Sign Language (ASL) - English bimodal bilinguals 
switch between producing ASL, English or both 
simultaneously (code-blending). Additionally, given 
recent evidence suggesting that bilinguals use proactive 
control to prepare for the upcoming language, we 
targeted whether we could decode language before 
lexical retrieval started. Our results showed that turning 
languages on and off relies on two independent processes 
and that distinct activity can be found for different 
languages even before lexical access processes are 
initiated. In all, our results provide crucial evidence to 
understand the processes involved in bilingual language 
representation, switching, and control. 
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The ability to switch languages is a unique aspect of 
bilingualism. While this phenomenon has been the object 
of a significant amount of research (e..g, Blanco-Elorrieta 
& Pylkkänen, 2016; Crinion et al., 2006; Meuter & 
Allport, 1999), crucial questions regarding language 
control processes could not be answered because the 
bilinguals in these studies used two spoken languages 
(“unimodal” bilinguals). For these bilinguals, language 
switching involves suppression of the non-target language 
(turning “off” a language) while simultaneously activating 
the target language (turning “on” a language). In this 
experiment we asked: are the switching on and off  
 

 
 
processes inherently intertwined such that the same  
neural mechanisms underlie both?  

In order to answer this question we had 21 native ASL 
– English bilinguals perform a picture naming language-
switching task where they switched between producing 
English, ASL, or both languages simultaneously (code-
blending). This design allowed us to tease apart the 
processes involved in turning a language on (when going 
from ASL or English into a code-blend (CB)) or turning a 
language off (when going from a CB to ASL or English). 

Methods 
 

MEG data were collected at  NYU NYC using a 157 
channel axial gradiometer system (Kanazawa Institute of 
Technology, Kanazawa, Japan). MEG data were recorded 
at 1000Hz (200Hz low-pass filter) and epoched from 100 
ms before the language naming cue to 500 ms after 
picture onset. Noise was reduced via the continuously 
Adjusted Least-Squares Method, and artifact rejection 
was performed as in previous work (Blanco-Elorrieta & 
Pylkkänen, 2016). 

For each within-subject analysis, we implemented a 
five-fold cross-validation procedure. Within the cross-
validation, MEG signals were normalized for each 
classifier separately. Stratified cross-validation balanced 
the proportion of each switch/language type in each fold. 
A linear support vector machine (SVM) for each fold and 
at each time point was then fitted on 4/5 of the trials (i.e., 
the training set). Each SVM aimed at finding the hyper 
plane (i.e., the topography) that best discriminated 
switch/language type at each time sample. This analysis 
captures evoked activity phase-locked to the beginning of 
trial. We then computed classification accuracy by testing 
an independent test set (1/5). The SVM outputted a 
categorical (i.e., discrete) prediction for each tested 
language or switch type). Lastly, to equalize the 
contribution of each of these categories in the definition 
of the hyperplane, a sample weighting procedure was 
applied in proportion to the classes. All multivariate 
analyses were performed with the open-source modules 
MNE-Python (www.martinos.org/mne/stable/index.htm) 
and Scikit-Learn (http://scikit-learn.org).  



 
 
Figure 1. Classification accuracy for A) Predicting whether a language was turned “on” or “off” and B) the language(s) 

that were produced. In both (A) and (B), the panels on the left show classifier accuracy trained and tested at every time point 
and the panels on the right show classifier accuracy for the diagonal of the matrix (i.e., when the classifier was trained and 
tested on the same time point).  
 

Statistical tests to assess the reliability of our 
classification accuracy were conducted as follows. Mean 
and standard deviation of the classifier at each time point 
were estimated over classifier accuracy over participant 
distribution. Then, we contrasted mean accuracy of the 
classifier at each time point against classification chance 
level using a one-sample t-test. Correction for multiple 
comparisons over time was applied as specified in 
Benjamini and Hochberg (1995). We report as reliably 
classified activity the first time-point in a sequence of at 
least 10 consecutive time-points for which classification 
accuracy significantly differed from chance level at an 
alpha of p < .05 after correction for multiple comparisons. 
Confidence intervals (95%) for the sample classification 
mean accuracy were constructed over subject accuracy 
distribution. 
 

Results 
 

Figure 1A shows significant decoding of turning a 
language on vs. off starting at 110 ms after picture 
presentation and lasting up until 230 ms, then again 245 – 
265 ms and 315 to 490 ms. Figure 1B shows significant 
decoding of the language produced (English, ASL or 
Code-blends) across trials, starting 360 ms after language 
cue presentation (40 before picture presentation) and 
lasting until the end of the trial.  

 
Discussion 

 

Our results show that even though some flavor of 
language control has to mediate both turning a language 
“on” and turning a language “off,” the neural 
underpinnings of these two processes are different, and 
they start to diverge ~100 ms after a to-be-named picture 
is presented. This finding has important implications for 
models of bilingual language control, since it shows that 
two distinct, parallel, processes take place during 
language switching. This result challenges basic 
assumptions of the inhibitory control model as it posits 
that inhibition of the non-target language may only 
account for half of the processes involved during 
language switching. The results from the language 
decoding analysis show that bilinguals can successfully  

utilize proactive control to prepare for the upcoming 
language before lexical retrieval processes start. However,  
given that our experiment included a condition in which 
both languages were simultaneously produced, it is 
unclear to what extent this proactive control is utilized to 
apply inhibition to the non-target language (Thierry & 
Wu, 2017). It is also possible that proactive control is 
used for (re)activation of the target language or  to direct 
attention to the correct lexicon. 
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