The neural representation of concepts during composition
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Abstract

The human brain is able to quickly build complex meaning
from simple building blocks. This is especially apparent in
language, as we combine words to create phrases, sentences
and beyond. Although much research has addressed both the
neural representation of individual words and the brain corre-
lates of semantic composition, we do not know how the rep-
resentations of words evolve and change during composition.
Here, we use a picture naming paradigm to explore semantic
composition under controlled conditions, wherein participants
utter different combinations of adjectives and nouns. We find
that, when compared to a non-compositional task, a composi-
tional task 1) has a neural representation that is more similar
to the single noun condition, 2) produces a less salient neu-
ral representation of the adjective, but 3) produces a more
salient representation of the noun. These results are an im-
portant first step towards understanding the representation of
higher-order meaning in the human brain.
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Semantic composition is one of the core processes re-
quired for comprehending language. While the neural rep-
resentation of single words has been characterized to some
extent (Mitchell et al., 2008; Sudre et al., 2012), the repre-
sentation of higher-order meaning has been more elusive. In
this study, we detail the changes in semantic representations
under conditions that vary the need for composition.

The neural dynamics involved in phrase building have
been measured with MEG for both language comprehen-
sion (Bemis & Pylkkénen, 2011) and production (Pylkkanen,
Bemis, & Blanco-Elorrieta, 2014). Here we explore a new pic-
ture naming paradigm that varies compositional requirements.
This paradigm is powerful because the stimuli are constant,
and the task dictates whether composition is required. Thus,
any difference in activity can be attributed only to differences
in language processing, not to differences in the stimuli.

In the experiment, participants viewed one of fifty stimuli
composed of five object colors crossed with five object types.
The background colors were balanced and chosen from the
same set of five colors. Each image was presented four times
across three conditions. In each of the conditions, participants
were asked to describe with a single utterance the identity of
the object (noun only condition), the color and identity of the
object (phrase condition), or the color of the background and

the identity of the object (list condition). For the stimulus in
Figure 1a the expected responses for the noun, phrase and
list conditions would be lamp, white lamp, and green lamp,
respectively. Each trial begins with a fixation cross (300 ms)
followed by the picture, which is displayed until timeout (1500
ms) or the onset of speech. We average random sets of 5
trials that share the same expected word utterance to make 4
averaged trials per word and 20 total examples per condition.

MEG data were collected in the Neuroscience of Language
Lab in NYU Abu Dhabi using a whole-head 208 channel ax-
ial gradiometer system (Kanazawa Institute of Technology,
Kanazawa, Japan). MEG data were recorded at 1000Hz
(200Hz low-pass filter), epoched from 100ms before to 600ms
after picture onset, and noise was reduced via the Continu-
ously Adjusted Least-Squares Method (Adachi et al., 2001).
Artifact rejection was performed as in previous work (Blanco-
Elorrieta & Pylkkéanen, 2016).

Methods
To represent word semantics, we use pre-trained word vec-
tors (Fyshe, Talukdar, Murphy, & Mitchell, 2013). These word
vectors are based on the co-occurrence of words in docu-
ments across a dataset of millions of webpages. The vectors
are compressed using singular value decomposition, and we
use the first 100 dimensions for our analysis.

Each trial is associated with three word vectors, one that
represents the color of the background (sb), one that repre-
sents the color of the object (s?), and one that represents the
noun (s™). We train independent ridge regression models on
sensor data to predict each dimension of the corresponding
word vectors. That is, there are 100 ridge regression models
trained for each word type (s, s2, s"), and the predictions of
those models are concatenated to create the predicted back-
ground, adjective or noun vectors (§P,§* and §"). For each
analysis we choose a condition and a word type that is present
in the expected response.

To measure performance we use the 2 vs. 2 test (Mitchell et
al., 2008). For each test we selected 2 examples, and trained
regression models on the remaining 18. We used the MEG
data from the 2 held out phrases to predict 2 word vectors.
The 2 vs. 2 task is to choose the correct assignment of pre-
dicted vectors §; and §; to true vectors s; and s;. We made the
choice by choosing the assignment that minimizes the sum
of the pairwise cosine distances (d). That is we choose the
smaller of d(s;,$;) +d(s;j,8;) and d(s;,$j) +d(sj,5i). The test
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(a) Example stimuli: a white lamp
on a green background.
cant differences are shaded.
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Figure 1: Example stimuli, and results.

passes if the former (and correct) assignment is chosen; 2
vs. 2 accuracy is the percentage of passed 2 vs. 2 tests. We
repeated this process for all pairs of examples where the ex-
pected utterances differ (160 in total).

Results

Figure 1b shows results for predicting the adjective or the
noun in phrase and list conditions. Each point gives the 2
vs. 2 accuracy when training a model using 100 ms of MEG
data centered at the corresponding time. Shaded red areas
correspond to significant differences between conditions, de-
termined by cluster permutation tests, p<0.05 (Maris & Oost-
enveld, 2007). We see early differences between conditions
when predicting the adjective; the 2 vs. 2 accuracy is higher in
the list condition. When predicting the noun, we see high 2 vs.
2 accuracy for both conditions, peaking at about 150 ms, and
a significant difference between conditions later in time, when
accuracy in the list condition drops.

We were interested to see if neural representations general-
ized across conditions. In particular, is the noun’s neural rep-
resentation during the noun only condition similar to the rep-
resentation in the list or phrase conditions? Figure 1c shows
the results for this test. Here we train models on the noun only
condition, but test on either the list or phrase condition. Train-
ing on the noun condition and testing on the phrase condition
gives excellent results, peaking slightly higher than training
and testing within the phrase condition (72.9% vs. 70.5%).
There is a significant difference between testing on the two
conditions (windows centered at 70-210 ms and 370-490 ms).
This is of particular interest because, again, the stimuli have
not changed, only the mental calculations required of the par-
ticipant. This implies that processing the stimuli to create a
noun phrase (i.e. single noun, or adjective noun phrase) is
more similar than forming an adjective noun list.

Remaining to be answered are the obvious questions of
where composed semantics are represented in the brain, and
how brain areas known to be involved in combinatorial pro-
cessing manipulate those representations. Still, our results

are a first step towards understanding the nature of composed
representations in the human brain.
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