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Abstract

■ Understanding speech in noise is a fundamental challenge
for speech comprehension. This perceptual demand is ampli-
fied in a second language: It is a common experience in bars,
train stations, and other noisy environments that degraded sig-
nal quality severely compromises second language comprehen-
sion. Through a novel design, paired with a carefully selected
participant profile, we independently assessed signal-driven
and knowledge-driven contributions to the brain bases of first
versus second language processing. We were able to dissociate

the neural processes driven by the speech signal from the pro-
cesses that come from speakers’ knowledge of their first ver-
sus second languages. The neurophysiological data show that,
in combination with impaired access to top–down linguistic
information in the second language, the locus of bilinguals’
difficulty in understanding second language speech in noisy
conditions arises from a failure to successfully perform a basic,
low-level process: cortical entrainment to speech signals above
the syllabic level. ■

INTRODUCTION

Speaking more than one language is the norm for most
of the world’s population (U.S. Census Bureau, 2013;
Craik & Bialystok, 2006), and multilingualism is increas-
ing notably (Cenoz et al., 2006). Although language pro-
ficiency can improve remarkably through exposure over
the years, even to the point of reaching native-like profi-
ciency, there is a familiar phenomenon that remains chal-
lenging throughout the life of a bilingual individual: In
noisy environments, comprehension is hard in a second
language (L2) but seems relatively effortless in a first
language (L1). Our understanding of the computational
and neural foundations of this ubiquitous phenomenon is
rather limited. A few hypotheses have attempted to account
for this experience (Hervais-Adelman, Pefkou, & Golestani,
2014; Golestani, Hervais-Adelman, Obleser, & Scott, 2013;
Ferreira, Engelhardt, & Jones, 2009; Hahne & Friederici,
2001), and although somewhat different in scope, they
have all proposed a lack of successful use of top–down
linguistic information as the source of this effect. The ratio-
nale is as follows: In any given situation where humans
listen to a degraded signal, they use top–down linguistic
knowledge such as the sentential context or predicted
semantic meaning of the sentence to calculate and repair
the message that has been obscured by the poor quality
of the input. Researchers have argued that bilingual indi-
viduals not having as easy an access to this top–down

semantic information in their second language leads to
an inability to repair the speech signal and to consequently
not understand the message (Hervais-Adelman et al.,
2014). Here, we tested the possibility that, in addition
to a failure to accurately apply high-level linguistic infor-
mation, the source of this persistent difficulty may also lie
in an inability to perform a lower-level process reported
to aid comprehension (Zoefel, Archer-Boyd, & Davis,
2018): the neurophysiologically well-established concept
of neural entrainment to speech (Lakatos, Karmos, Mehta,
Ulbert, & Schroeder, 2008; Buzsáki & Draguhn, 2004).

To characterize quantitatively the effect of noise across
different L2 proficiency levels, we recruited bilingual
(Mandarin Chinese, American English) participants who
were (i) Mandarin Chinese native speakers with low
English proficiency, (ii) Mandarin native speakers with
high English proficiency (these participants lived in
China until adulthood and had learned English since they
were young, but only in an academic setting), and (iii)
native speakers of Mandarin who were English dominant
(born to at least one Mandarin-speaking caregiver in an
English-speaking country). Thus, our carefully selected
participant sample covered the full spectrum of possible
language proficiency combinations in both languages. We
recorded magnetoencephalographic (MEG) responses
while participants listened to four-word sentences at dif-
ferent signal-to-noise ratios (SNRs), varying from
completely clear to fully unintelligible speech. We discov-
ered that the neural responses that track the physical
speech rhythm are affected by noise—but not by lan-
guage proficiency. In contrast, responses tracking linguis-
tic structure reflect the interaction between noise and
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knowledge. Hence, complementing previous research
suggesting that greater availability of top–down linguistic
information may account for the difference in L1 versus
L2 comprehension (Hervais-Adelman et al., 2014), the
data show that an automatic lower-level mechanism
tracking speech also contributes to the prevalent effect
of impoverished comprehension of L2 speech in noise.

METHODS

Participants

Fifty-one right-handed Mandarin–English bilingual indi-
viduals participated in the experiment (16 men, 35 women;
age: M = 20 years, SD = 2.45 years). To meaningfully
characterize the effect of noise across varied second-
language proficiency levels, we selected Mandarin–
English bilinguals with diverse language backgrounds.
Sixteen of the participants were native speakers of
Mandarin who had acquired English later in life and had
always lived in a Mandarin-speaking environment (age of
acquisition: Mandarin = 1.31 years [SD = 1.53 years],
English = 7.62 years [SD= 3.5 years]). Their self-reported
oral (speaking and understanding) proficiency was 96.8%
in Mandarin (SD = 4.7%) and 68.5% in English (SD =
7.1%), and their score in the Woodcock–Muñoz English-
language survey was 51.8%. English had never been their
language for socializing, and they had rarely used it
outside a classroom context. Seventeen participants were
native speakers of Mandarin with high proficiency in
English. They had acquired English earlier in life at interna-
tional schools but had grown up in a Mandarin-speaking
environment (age of acquisition: Mandarin = 1.33 years
[SD= 0.88 years], English = 5.91 years [SD= 4.42 years]).
They had moved to the United States for undergraduate
education at some point in the past 3 years and had since
been in an English-speaking environment. Their self-
reported oral proficiency was 94.1% in Mandarin (SD =
3.2%) and 82.9% in English (SD = 6.4%), and their score
in the Woodcock–Muñoz English-language survey was
68.8%. Finally, we tested a group of English-dominant
speakers (n = 18), who were born to at least one
Mandarin-speaking parent in the United States (age of
acquisition: Mandarin = 1.83 years [SD = 0.70 years],
English = 2.25 years [SD = 4.24 years]). Hence, they had
learned Mandarin from birth, but the dominant language
in their environment and everyday use had always been
English. Their self-reported oral proficiency was 76.4%
in Mandarin (SD = 6.1%) and 95.6% in English (SD =
2.41%), and their score in the English-language survey
was 91.4%. In this last group, participants reported that
their life unfolded fully in English except for at home,
where they spoke Mandarin, and they reported their
English to be significantly better than their Chinese.

Our grouping criterion was validated post hoc by
submitting participants to K-means clustering based on
all the collected language profile variables (i.e., age of

acquisition, exposure, self-reported proficiency, and
quantitative measures of proficiency) and showing that
our criterion matched the output of this unsupervised
clustering algorithm, t(49) = 7.22, p< .001 (see additional
materials for detailed language background informa-
tion). Information about their language use and profi-
ciency level was gathered with a modified version of
the language background questionnaire of Marian,
Blumenfeld, and Kaushanskaya (2007; see additional
materials1 for full language background information).
All participants were neurologically intact with normal
or corrected-to-normal vision, and all provided informed
written consent following New York University institu-
tional review board protocols.

Stimuli

Participants listened to four-syllable sentences, concatenated
and isochronously presented, in English and Mandarin.
Mandarin stimuli were 50 four-syllable sentences taken
from Ding, Melloni, Zhang, Tian, and Poeppel (2016;
MandarinMaterials, Supplementary Table 1,2 four-syllable
sentences), in which the first two syllables formed a noun
phrase and the last two formed a verb phrase (Figure 1B,
left). The combination of the noun and the verb phrase
formed a complete sentence. All syllables were presented
isochronously, lasted between 75 and 354 msec (mean
duration = 224 msec; Figure 1B, top right), and were
adjusted to 250 msec by truncation or padding silence
at the end. Each trial consisted of the sequential presen-
tation of 10 of these sentences, and crucially, no acoustic
gaps were inserted between sentences, as such a gap
would constitute an unwanted acoustic cue for segmen-
tation. For this reason, the intensity of the stimulus, as
shown by the sound envelope, only fluctuated at the syl-
labic rate (see Figure 1AB, bottom right, Supplementary
Figure 1 for stimulus spectrograms3). That being said, the
sequences of four syllables constituted clearly segmen-
table sentences. English materials consisted of 60 four-
syllable sentences. Each sentence consisted of four
monosyllabic words combined to form two-word noun
phrases (adjective + noun) and two-word verb phrases
(verb + noun). The combination of these two phrases
resulted in four-word sentences (e.g., “big rocks block
roads”; Figure 1A, left). All syllables were between 250
and 347 msec in duration and were adjusted to 320 msec
by padding or truncation (Figure 1A, top right). For
both English and Mandarin, a 25-msec cosine window
smoothed the offset of each syllable. All sentences in
English and Mandarin are displayed in the supplemen-
tary materials. Although the syllable duration in the two
languages was different, the manipulation was designed
to ensure isochronous presentation, which is the essen-
tial feature of the experimental design.
We embedded all sentences in four different levels of

white noise. We first measured the power of the sen-
tences in isolation and then added white noise to reach
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the desired output SNR in decibels. The SNR levels ranged
from +15 dB (clear speech) to −15 dB (unintelligible
speech in noise) in 7.5-dB intervals. Although ideally
(and eventually) babbling noise may be a better back-
ground noise to mirror the type of noise experienced in
real life, white noise was selected for a first characteriza-
tion to avoid confounding semantic, phonological, or lan-
guage interference effects that went beyond the effects of
noise qua noise. Participants heard 160 sentences at each
noise level for each language, and the experiment took
approximately 1 hr to complete. Across participants, each
four-syllable sentence was presented an equal number of
times at each level of noise, and the presentation of these
sentences and noise levels was fully randomized.

Procedure

Before the MEG recording, each participant’s head
shape was digitized using a Polhemus dual-source hand-
held FastSCAN laser scanner. MEG data were collected in
the Neuroscience of Language Laboratory at New York
University using a whole-head 157-channel axial gradi-
ometer system (Kanazawa Institute of Technology) as
participants lay in a dimly lit, magnetically shielded
room. Trials began with the binaural auditory presenta-
tion of the stimuli. Participants listened to sets of 10 ran-
domly presented four-syllable sentences in either
language and were then presented with a 1–4 scale

on-screen. Listeners had to indicate via button press
how much they understood (1 = nothing at all and
4 = everything). The validity of this comprehension
measure has been established by showing qualitatively
comparable results between this subjective measure of
comprehension and participants’ performance on recall
tests (Doelling, Arnal, Ghitza, & Poeppel, 2014; Ghitza,
2012). After the button press, the next trial began.
After the MEG recording, all participants completed
the Woodcock–Muñoz Language Survey to evaluate their
proficiency in English. Participants completed the first
four parts of this survey, aimed to assess their oral, lis-
tening, reading, and writing skills. The completion of
this test took around 45 min.

Data Acquisition and Preprocessing

MEG data were recorded at 1000 Hz (200-Hz low-pass fil-
ter), noise reduced via the continuously adjusted least-
squares method (Adachi, Shimogawara, Higuchi,
Haruta, & Ochiai, 2001) in MEG Laboratory software
(Yokogawa Electric and Eagle Technology), and epoched
from beginning to end of the auditory stimulus. The MEG
responses were decomposed into components using a
denoising source separation technique (de Cheveigné
& Simon, 2008; for a detailed explanation, see Ding
et al., 2016), and the first five components were kept
for analysis and projected back into sensor space. This

Figure 1. Sample English (A)
and Mandarin (B) stimuli.
Monosyllabic words were
presented isochronously,
forming phrases and sentences.
(Left) Presentation rate and
syntactic structure of the
stimuli. In each of A and B: top
right, waveform of a sample
stimulus; bottom right, spectral
intensity of the stimulus at each
tested level of noise, revealing a
syllabic-scale rhythm at all levels
of noise but no phrasal or
sentential rate modulation.
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technique decomposes MEG recordings to extract the
neural response components that are consistent over tri-
als, and it was applied to accurately estimate the strength
of neural activity phase-locked to the stimulus. To avoid
the transient response at the beginning of each trial, data
were only analyzed from the beginning of the second
sentence of each 10-sentence trial. Single-trial responses
per noise level and participant were Fourier transformed
into the frequency domain and subsequently averaged
within condition to obtain an evoked response per con-
dition per participant.

Data were source local ized with MNE-Python
(Gramfort et al., 2013, 2014). To estimate the distributed
electrical current image in the brain at each time sample,
we used the minimum norm approach (Hämäläinen &
Ilmoniemi, 1994) via MNE (MGH/HMS/MIT Athinoula
A. Martinos Center for Biomedical Imaging). The cortical
surfaces were constructed using an icosahedron subdivi-
sion of five and mapping an average brain from
FreeSurfer (CorTech and MGH/HMS/MIT Athinoula A.
Martinos Center for Biomedical Imaging) to the head-
shape data gathered from the head-scanning process.
This generated a source space of 5124 points for each re-
constructed surface, leaving ∼6.2 mm of spacing within
sources (cortical area per source = ∼39 mm2). Then,
the boundary-element model method was used to calcu-
late the forward solution. The 100-msec prestimulus pe-
riod was used to construct the noise covariance matrix
and to apply as a baseline correction. The inverse solu-
tion for each participant was then computed from the
noise-covariance matrix, the forward solution, and the
source covariance matrix and was applied to the evoked
response for each condition. The application of the in-
verse solution determined the most likely distribution
of neural activity in source space. Minimum norm current
estimates were computed for three orthogonal dipoles,
of which the root mean square was retained as a measure
of activation at that source (thus, the orientation of the
dipole was free unsigned). The resulting minimum norm
estimates of neural activity were transformed into nor-
malized estimates of noise at each spatial location using
the default regularization factor (SNR = 3). Hence, we
obtained noise-normalized SPMs, which provide informa-
tion about the statistical reliability of the estimated signal
at each location in the map with millisecond accuracy.
Then, those SPMs were converted to dynamic maps
(dSPMs). To quantify the spatial resolution of these
maps, the point-spread function for different locations
on the cortical surface was computed. The point spread
is defined as the minimum norm estimate resulting from
the signals coming from a current dipole located at a cer-
tain point on the cortex. The calculation of the point-
spread function following the approach of Dale et al.
(2000) reduces the location bias of the estimates, in par-
ticular, the tendency of the minimum norm estimates to
prefer superficial currents (i.e., their tendency to misat-
tribute focal, deep activations to extended, superficial

patterns). Hence, by transforming our minimum norm
estimates to dSPM, we obtained an accurate spatial blur-
ring of the true activity patterns in the spatiotemporal
maps (Dale et al., 2000).

Analyses

Behavioral Data

For the main statistical tests, we conducted mixed-effects
model analyses using the lme4 package (Bates, Mächler,
Bolker, & Walker, 2015) in R (R Core Team, 2012) using
noise (−15, −7.5, 7.5, and 15 dB), proficiency, and the
interaction between them as fixed effects and participant
as a random effect. In addition, we conducted comple-
mentary categorical analyses within each group of partic-
ipants to assess the effect of noise in intelligibility within
each language profile specifically. For this analysis, re-
sponses for each trial were averaged within participant
for each noise level. We subsequently conducted a relat-
ed samples two-tailed t test across participants to assess
whether their comprehension in English and Mandarin
at each noise level significantly differed. All reported
p values are false discovery rate (FDR) corrected for
multiple comparisons.

Tracking Analyses

MEG activity for each trial was averaged within partici-
pant at each noise level in the frequency domain. We
then subjected the amplitude at the syllabic and phrasal
peak to the same linear mixed-effects model used on be-
havioral data, with noise, proficiency, and their interac-
tion as fixed effects and participant as a random effect
(low-frequency environmental noise during the record-
ings prevented us from analyzing entrainment to the sen-
tential level). Having assessed that the interaction of
noise and proficiency significantly accounted for the am-
plitude of the peaks, we split participants by proficiency
to unpack the nature of this effect and assess the effect of
noise at both the syllabic and phrasal peak within these
groups. For each spectral peak, a one-tailed paired t test
was used to test if the neural response across all sensors
in a frequency bin was significantly stronger across par-
ticipants than the average of the four neighboring fre-
quency bins (two bins on each side). We corrected for
multiple comparisons across t tests using FDR correction.
The application of a 1000-permutation test in lieu of the
original t tests revealed the same significant results.

Source Localization Analysis

Having obtained distinct tracking effects across languages
for each participant group at −7.5 dB, we turned to the
source-localized data to identify from where in the cortex
this activity was emerging. For this purpose, we sub-
tracted the response to the English sentences at −7.5 dB
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from the response to Mandarin sentences at −7.5 dB
(averaged across participants). This analysis hence re-
vealed the localization of the oscillatory analysis effect.

RESULTS

Behavioral Results

Behavioral results showed that the influence of noise on
the comprehension of speech varied based on individ-
uals’ language proficiency. A linear mixed-effects regres-
sion model regressing noise, age of acquisition, and
language proficiency on comprehension revealed that,
(i) in addition to noise and proficiency significantly
influencing comprehension independently, (ii) they also
interacted significantly, such that the decrease in com-
prehension because of noise was greater, the lower the
proficiency of the individual in that language. This effect
held both for Chinese (noise: F(1, 4551) = 148, p < .001;
proficiency: F(1, 46.8) = 31.5, p < .001; interaction be-
tween noise and proficiency: F(1, 4550) = 4.45, p =
.03) and English (noise: F(1, 4975) = 44.1, p < .001; pro-
ficiency: F(1, 47) = 7.72, p = .007; interaction between
noise and proficiency: F(1, 4975) = 23.39, p < .001)
stimuli.
Next, to unpack these results, we complemented the

continuous regression analysis with categorical analyses
wherein we assessed the influence of noise in compre-
hension for each language group. We found that, for
Mandarin-dominant participants with low English profi-
ciency (Figure 2A), the lower comprehension of English
compared to Mandarin was constant across all levels of
noise ( p < .001). However, Mandarin speakers with high
English proficiency understood both languages equally in
clear speech (15 dB: p = .09; 7.5 dB: p = .14), but their
comprehension of English was severely impaired in noisy
conditions (−7.5 and −15 dB: p < .001; Figure 2B).

Finally, we found that English-dominant bilinguals
showed an overal l impaired comprehension of
Mandarin, except at the highest level of noise; in that
case, participants did not report understanding in either
language (15, 7.5, and −7.5 dB: p < .001; −15 dB: p =
.12; Figure 2C). Overall, behavioral results reveal that the
influence of noise on the comprehension of speech var-
ied contingent on language knowledge.

MEG: Cortical Tracking Results

While participants listened to the sentences, we recorded
neural activity with MEG. Cortical oscillations have been
proposed to be likely candidates for segmentation of
continuous speech (Zoefel et al., 2018; Gross et al.,
2013; Luo & Poeppel, 2007). We performed analyses
aimed to quantify how entrainment to different linguistic
levels (words vs. phrasal structures) was disrupted by
noise, on the one hand, and language proficiency, on
the other (low-frequency environmental noise during
the recordings prevented us from analyzing entrainment
to the sentential level). The MEG responses were trans-
formed into the frequency domain, and we retained for
subsequent analysis the five neural response components
that were the most consistent over trials, as identified by
spatial filters (see Methods). Results revealed the distinct
influence of noise on the cortical tracking of different lin-
guistic levels. A linear mixed-effects regression on the
amplitude of syllabic and phrasal peaks with age of acqui-
sition, language proficiency, noise, and their interactions
as continuous regressors revealed that, whereas the level
of tracking at the syllabic level was only affected by noise,
F(3, 144) = 2.64, p = .05 (age of acquisition: F(3, 144) =
1.09, p = .35; language proficiency: F(3, 144) = 1.98,
p = .11; interaction between noise and language: F(3,
144) = 1.81, p = .14), at the phrasal level, there was a

Figure 2. Comprehension performance for participants as a function of noise, averaged across participants (shaded area: 95% confidence interval).
Below each graph, we report the average age of acquisition (AoA), self-reported proficiency (Prof.self), and English proficiency score in the Woodcock
language questionnaire (Prof.test) for the participants in each group.
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reliable interaction between noise and language proficiency,
F(3, 144) = 2.76, p= .04, whereas themain effects of age of
acquisition, F(3, 144) = 0.98, p= .4, language proficiency,
F(3, 144) = 2.1, p = .1, and noise, F(3, 144) = 2.03, p =
.11, were not significant. This shows that the tracking
capabilities of noisy signals vary across individuals de-
pending on their proficiency. Furthermore, there was a
significant correlation between the amplitude of the syl-
labic peak and that of the phrasal peak, t(202) = 40, p <
.001, suggesting a relation between participants’ capacity
to segment incoming speech and parsing the syntactically
relevant structure.

Analogously to the behavioral data analysis, we com-
plemented the continuous analysis with a categorical
analysis where we assessed how individuals of different
language profiles tracked both syllabic and phrasal struc-
tures. In consonance with the regression analysis, we
found that participants of all proficiency combinations
tracked the syllabic rhythm at all levels of noise, and
the amplitude of this tracking response decreased as
noise increased (Figure 3: 3.2-Hz response at the top,
4-Hz response at the bottom). However, the tracking of
phrasal structure was heavily dependent on language
proficiency and comprehension (Figure 3: 1.6-Hz re-
sponse at the top, 2-Hz response at the bottom).

Specifically, with regard to speech rhythm tracking,
Mandarin speakers with low English proficiency tracked
syllabic rhythm in Mandarin (15 dB: p < .001; 7.5 dB:

p = .002; −7.5 dB: p = .001; −15 dB: p = .008) and
English (15 dB: p < .001; 7.5 dB: p < .001; −7.5 dB: p =
.003; −15 dB: p = .002), as did Mandarin native speakers
with high English proficiency (Mandarin: 15 dB, p = .04;
7.5 dB, p = .04; −7.5 dB, p = .04; −15 dB, p = .03;
English: 15 dB, p < .04; 7.5 dB, p = .04; −7.5 dB, p =
.03; −15 dB, p = .04) and English-dominant speakers
(English: all noise levels, p < .001; Mandarin: 15 and
7.5 dB, p < .001; −7.5 dB, p = .021; −15 dB, p = .01).
In contrast, there was a clear disparity in the tracking

response to phrase-level structure across languages de-
pending on the proficiency combinations of the partici-
pants. Mandarin-dominant speakers with low English
proficiency did not track English phrases (15 dB: p =
.33; 7.5 dB: p = .52; −7.5 dB: p < .1; −15 dB: p =
.21; Figure 3A), although they did track phrases in
Mandarin at all levels of noise (15, 7.5, and −7.5 dB:
p < .001), except during pure noise (−15 dB: p = .53;
Figure 3D). As proficiency in English increased, so did
the tracking of the English phrases. Mandarin speakers
with high English proficiency did track phrases at the
clearest levels of speech in English (15 dB: p < .04; 7.5 dB:
p= .02), although not at the two noisier levels (−7.5 dB:
p = .16; −15 dB: p = .22; Figure 3B), while also being
able to track Mandarin phrases at all levels of noise
(15 dB: p= .04; 7.5 dB: p= .04;−7.5 dB: p= .02) except
during pure noise (−15 dB: p = .15; Figure 3E). Finally,
English-dominant speakers showed phrasal tracking of

Figure 3. MEG-derived neural response spectra for each language group (Mandarin dominant − low English [n = 16], Mandarin dominant − high
English [n = 12], and English dominant − high Mandarin [n = 12]). Solid lines indicate average response; shading indicates 95% CI. Spectral peaks
at corresponding frequencies reflect whether there was neural tracking of syllabic or phrasal rhythms at a given level of noise. Frequency bins with
significantly stronger power than two neighbors on each side are marked with an asterisk (*) of the corresponding color ( p < .05, paired one-sided
t test, FDR corrected).
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English phrases at 15 and 7.5 dB, as did the Mandarin-
dominant speakers with high English proficiency ( p =
.04 and p = .002, respectively). However, crucially, the
speakers with higher English proficiency were additionally
able to track phrases at −7.5 dB ( p = .04; Figure 3C).
Hence, the increase in English proficiency was accompa-
nied by tracking of phrasal structures at higher levels of
noise. In contrast, these same English-dominant speakers
whose Mandarin was mildly worse were only able to track
phrases in Mandarin at the two clearest levels of speech
(15 dB [p = .03] and 7.5 dB [p = .01]), but not at −7.5 dB
( p = .09) or −15 dB ( p = .1) like Mandarin-dominant
speakers had done (Figure 3F). Hence, the categorical
analyses confirmed what the regression analysis revealed:
Noise and proficiency interact critically in the tracking of
higher-level linguistic structures.
These results build on previous findings reporting an

effect of intelligibility on cortical tracking of speech
(Park, Ince, Schyns, Thut & Gross, 2015; Doelling et al.,
2014; Peelle, Gross, & Davis, 2013) but reveal a more
complex and informative pattern than previously known.
Specifically, we show (i) that not all levels of entrainment
are affected equally by noise and (ii) that not only the

physical properties of the stimuli but also the language
proficiency of the listener affects the degree of entrain-
ment to different linguistic structures. These results com-
plement research showing that overall neural oscillatory
activity underlying speech processing also varies with sec-
ond language proficiency (Pérez & Duñabeitia, 2019;
Pérez, Carreiras, Dowens, & Duñabeitia, 2015).

MEG: Source Localization

Finally, we performed analyses to identify from where in
the cortex the reported activation patterns were emerging.
We source-localized the same five MEG components sub-
mitted to the frequency-domain analysis and compared
neural responses to English and Mandarin at −7.5 dB, as
this was the SNR at which language proficiency clearly de-
termined the presence or absence of phrasal entrainment.
The analysis revealed that activity in areas surrounding
the auditory cortex elicited increased activity in response
to the better-understood language. Furthermore, this
increase widened commensurate with the imbalance
between languages (Figure 4). This is consistent with

Figure 4. Whole-brain source
localization of the five neural
response components most
consistent over trials, identified
with a denoising source
separation technique. The
whole-brain images show the
result of subtracting the average
activity elicited by English
sentences (at −7.5 dB) from
the average activity elicited
by Mandarin sentences (at
−7.5 dB), averaged across
participants. Activity is displayed
in noise-normalized SPMs
(dSPM; blue indicates higher
activity for English stimuli; and
red, for Mandarin stimuli).
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previous research that localized intelligibility effects
(Keitel, Gross, & Kayser, 2018; Peelle et al., 2013).

DISCUSSION

The combined behavioral and neurophysiological data
we present capitalize on recent findings and illuminate
speech and language processing in new ways. In particu-
lar, it has been shown that neural entrainment to speech
signals enables both tracking of the acoustic input, prin-
cipally the amplitude envelope, but also higher-order
structure building operations that are not accessible from
the physical input alone (Figures 1 and 3; Keitel et al.,
2018; Ding et al., 2016; Luo & Poeppel, 2007). In this
study, we found that neural responses at the theta band
that track the physical speech rhythm are only affected by
noise—but not by language proficiency. In contrast, neu-
ral tracking of phrasal structure at delta level was affected
by the interaction of noise and language knowledge. We
advance current understanding in two significant ways,
deriving from the parametric nature of the experimental
design, in which we concurrently vary the quality of the
speech signal (Figure 1) and the language proficiency of
the listeners (Figure 2).

First, the paradigm allows us to establish that the lan-
guage knowledge of the listener determines the spectral
information required for speech recognition (cf. Shannon,
Zeng, Kamath, Wygonski, & Ekelid, 1995). In other words,
there is no such thing as a categorical limit on how impo-
verished the signal can be before comprehension is com-
promised. Instead, this boundary is malleable and shifts in
concordance with the linguistic capabilities of the listener.

Relatedly, we show that, neurophysiologically, it is at the
phrasal level (cf. Figure 1) that differential knowledge of
language is especially influential. The minimum level of
SNR necessary to facilitate phrase-level tracking is between
−15 and−7.5 dB in the native language and between−7.5
and 7.5 dB in the nonnative language (Figure 3), which in
turn forms the basis for structure building. Listeners who
track their L1 well at−7.5 dB fail at tracking their L2 at that
same SNR, suggesting that the tracking impairment is not
because of peripheral causes but implicates higher-order
limitations. This finding suggests that it is not only con-
scious comprehension but also unconscious neural pro-
cesses that are sensitive to the interaction between noise
and language knowledge. This finding is consistent with re-
search suggesting that delta oscillations are not primarily
involved in early sound analysis and phonological process-
ing, but rather, they reflect the encoding of abstract syntac-
tic structures (Kösem & van Wassenhove, 2017), with
recent findingsshowingthatdeltabandtrackingyieldsa sig-
nificant prediction of speech comprehension (Etard &
Reichenbach, 2019). Importantly, some level of compre-
hension was achieved even in the absence of phrasal track-
ing, suggesting that tracking is not sine qua non to achieve
basic understanding. Rather, it would seem that tracking

enhances comprehension and itmay be necessary to reach
full comprehension.
These results shed new light on the conceptualization

of multilingual language comprehension. Although previ-
ous accounts revealed that the source of the prevalent bi-
lingual impairment to comprehend speech in noise
emerges from deficiencies in access to lexical or syntactic
information in this language (Hervais-Adelman et al.,
2014; Ferreira et al., 2009; Hahne & Friederici, 2001),
our results suggest that this impairment is additionally re-
flected, and perhaps instigated, by a failure to successfully
complete lower-level processes. Although this experiment
cannot prove causality by itself, this proposal is supported
by recent research in monolingual individuals showing
that the capability to entrain to linguistic structures can
in fact causally affect comprehension (Zoefel et al., 2018).
Mechanistically, by hypothesis, comprehension may be

enhanced by a feedback loop such that bottom–up rhyth-
mic structure and top–down information mutually aid the
prediction and processing of upcoming signals (Peelle
et al., 2013). In bilinguals, both of these processes may
be compromised: Although previous research has focused
on the information availability aspect (Hervais-Adelman
et al., 2014; Golestani et al., 2013), we show that the impo-
verished comprehension of speech in noise by L2 learners
is also determined by a disruption in the entrainment to
linguistic structures. Importantly, these processes do not
seem dissociable: There was a significant correlation be-
tween the amplitude of the syllabic peak and the amplitude
of the phrasal peak, suggesting a meaningful relation be-
tween participants’ capacity to segment incoming speech
(i.e., a signal-based low-level process) and parsing the syn-
tactically relevant structure (i.e., a high-level process).
In summary, our results characterize the minimum

SNR requirements for neural entrainment to different lin-
guistic structures, specify the differential influence of
noise and knowledge on syllabic and phrasal tracking,
and reveal a neurophysiological pattern that may underlie
the widely experienced phenomenon of compromised
comprehension of second language speech in noisy
environments.
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Notes

1. The questionnaire can be retrieved from https://
estiblancoelorrieta.github.io/Modified_lang_quest.pdf.
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2. MandarinMaterials, Supplementary Table 1 can be retrieved
from https://staticcontent.springer.com/esm/art%3A10.1038%
2Fnn . 4186 /Med i aOb j e c t s / 41593_2016_BFnn4186_
MOESM63_ESM.pdf.
3. Supplementary Figure 1 can be retrieved from https://
estiblancoelorrieta.github.io/Modified_lang_quest.pdf.
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